Deliberation and the Wisdom of Crowds

Supplementary Material: Code for Simulations

For Journal Website

For each parameter constellation under consideration, our Monte Carlo simulation gen-
erates many independent outcomes of the pre- and post-deliberation opinion structure,
and then derives estimates of relevant quantities by taking appropriate averages across
simulation rounds. The simulations were run in Python 3. We first coded an explicit
routine that represented the opinion structure in lists (not shown here). To validate and
to improve speed, we took a different coding approach by vectorizing with numpy arrays.
This speed-optimized, documented code is shown below.
import numpy as np

from itertools import combinations
rng — np.random. default rng()

def share absorb(rounds, n, S size, sd, p_acc, p_shares, p_absorbs):
"""Monte Carlo simulation with rTounds, group Ssize, source size,
standard deviation , and the access, shareing, and receiving parameters
list to track pre—deliberation majority
pre_result tracker = []
list to track post—deliberation majority

mmnun

post result tracker = []

list to track pre—deliberation spread imbalance
si_tracker = []

list to track post—deliberation spread imbalance
si_plus_tracker = []

list to track pre—deliberation interpersonal imbalance
ii_tracker = []

list to track post—deliberation interpersonal imbalance
ii_plus_tracker = []

for r in range(rounds):
create boolean array with access S_¢ based on access parameter
Each [i,s] entry is whether individual i has access to source s

access = p_acc — np.random.rand(n, S_size) > 0
calculate spread imbalance index
si_sum = 0

for all spread pairs (combination), for each count spread on azis 0
for tup in combinations(np.sum(access, axis=0), 2):
#calculate spread imbalance

sl = abs(tup[0] — tup[1])
s2 = (tup[0] + tup[1l]) / 2
#sum up if denominator is not 0 (otherwise assume result is 0)

if s2 =0
si_sum += s1/s2
si_sum = si_sum * 2 / (S_size * (S_size—1))

si_tracker.append(si_sum)
create evidences based on mormal distribution
e_s = rng.normal (1, scale = sd, size = S_size)
limit evidences to each individual with access only
each [i,s] entry is the evidence individual i has from source s
e s 1 =e_ s * access
calculate interpersonal imbalance index pre—deliberation
ii_sum = 0
for all individual evidence pairs (combination)
calculate absolute total evidenmce by summing an azis 1
for tup in combinations(abs(np.sum(e s i, axis=1)), 2):
#calculate interpersonal imbalance index
s1 = abs(tup[0] — tup[1])
s2 = (tup[0] + tup[1l]) / 2
#sum up if demominator is not 0

if s2 =0
ii_sum += s1/s2
ii_sum = ii_sum * 2 / (n * (n—1))

ii_tracker.append(ii_sum)
votes as the sum of evidences each individual has access to

pre_votes = np.sign(np.sum(e_s i, axis=1)) # per individual
pre_result = np.sign(np.sum(pre_votes)) # as group
pre_result tracker.append(pre_result)

Sharing

check who reaches random prob to share,
but only among those with access

who shares = access % (p_shares — np.random.rand(n, S _size) > 0)
determine which sources have been shared at least once
sent = np.any(who_shares, axis=0)

determine who reaches random prob to absorb,
but only among the sources shared
join these mnew links with the exzisting links
S i plus = sent % (p_absorbs — np.random.rand(n, S size) > 0) + access
evidences for each individual with post—deliberation sources
e s i plus =e_s x S_i plus
take post—deliberation wvotes
post _votes = np.sign(np.sum(e_s_ i plus, axis=1))
post _result = np.sign (np.sum(post_votes))
post result tracker.append(post_ result)
calculate post—deliberation spread imbalance index
si_sum = 0
for tup in combinations(np.sum(S_i_ plus, axis=0), 2):
sl = abs(tup[0] — tup[1])
s2 = (tup[0] + tup[1l]) / 2

if s2 =0 :
si_sum += s1/s2
si_sum = si_sum * 2 / (S_size * (S_size—1))

si_plus_tracker.append(si_sum)

calculate post—deliberation interpersonal imbalance index
ii_sum = 0
for tup in combinations(abs(np.sum(e s i plus, axis=1)), 2):
sl = abs(tup[0] — tup[1])
s2 = (tup[0] + tup[1l]) / 2

if s2 =0 :
ii_sum += s1/s2
ii_sum = ii_sum % 2 / (n % (n-—1))

ii_plus_tracker.append(ii_sum)
summarize aggregate estimates
predelib_comp = sum([x==1 for x in pre result tracker]) / rounds

postdelib_comp = sum([x==1 for x in post_result tracker]) / rounds
si_mean — np.mean(si_tracker)

si_plus mean = np.mean(si_plus_tracker)

ii_mean = np.mean(ii_tracker)

ii_plus mean = np.mean(ii_ plus tracker)

comp diff = postdelib_comp — predelib_comp

si_change = (si_plus_mean — si_mean) / si_mean

ii_change = (ii_plus mean — ii_mean) / ii mean

return (predelib comp, postdelib comp ,si_mean, si_plus_ mean, ii mean,
ii_plus_mean, comp_ diff, si change, ii_change)

