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Abstract

A group is often construed as one agent with its own probabilistic beliefs (credences),

which are obtained by aggregating those of the individuals, for instance through aver-

aging. In their celebrated “Groupthink”, Russell et al. (2015) require group credences

to undergo Bayesian revision whenever new information is learnt, i.e., whenever individ-

ual credences undergo Bayesian revision based on this information. To obtain a fully

Bayesian group, one should often extend this requirement to non-public or even private

information (learnt by not all or just one individual), or to non-representable informa-

tion (not representable by any event in the domain where credences are held). I pro-

pose a taxonomy of six types of ‘group Bayesianism’. They differ in the information for

which Bayesian revision of group credences is required: public representable information,

private representable information, public non-representable information, etc. Six corre-

sponding theorems establish how individual credences must (not) be aggregated to ensure

group Bayesianism of any type, respectively. Aggregating through standard averaging

is never permitted; instead, different forms of geometric averaging must be used. One

theorem—that for public representable information—is essentially Russell et al.’s cen-

tral result (with minor corrections). Another theorem—that for public non-representable

information—fills a gap in the theory of externally Bayesian opinion pooling.

1 Three challenges for Bayesian groups

Bayesianism requires an agent’s beliefs to take the form of coherent probability

assignments (probabilism) and to be revised via Bayes’ rule given new informa-

tion (conditionalization). Let us apply these requirements to a group agent: let

a group itself hold probabilistic beliefs and revise them via Bayes’ rule. Such

Bayesianism for groups – or group Bayesianism – faces three challenges which

distinguish it from ordinary Bayesianism for individuals.

The first challenge comes from the fact that group beliefs are not free-floating,

but determined at any point of time by the current beliefs of the group members,

as is usually assumed. Formally, there exists a function, the pooling rule, which

transforms any possible combination of individual credences into group credences.

1Paris School of Economics & CNRS, www.franzdietrich.net. I especially thank Marcus 
Pivato with whom some key technical results of the paper were jointly developed in February 
2015. This research was supported by the French National Research Agency through the grants "Coping 
With Heterogeneous Opinions" (ANR-17-CE26-0003) and "Collective Attitude Formation" (ANR-16-
FRAL-0010) and through an EUR grant.
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For instance the averaging rule defines the group credence in an event as the av-

erage individual credence in it. The question is: which pooling rules guarantee

group Bayesianism? To see the problem, imagine new information comes in. Ac-

cording to the pooling rule, the new group beliefs are obtained by pooling the

new individual beliefs. Meanwhile by group Bayesianism the new group beliefs

are obtained by revising the old group beliefs via Bayes’ rule. So pooling the

revised individual beliefs should yield the same as revising the old group beliefs.

This places a severe mathematical constraint on the choice of pooling rule. The

mentioned averaging rule violates this constraint; so it generates non-Bayesian

group beliefs. One might try to defend averaging by arguing that Bayesian condi-

tionalization is not always the right revision policy (Joyce 1999, Hájek 2003) and

that averaging may suit the different revision policy of ‘imaging’ (Leitgeb forth.),

and besides that averaging is the basis of Lehrer and Wagner’s (1981) consensus

formation theory. But if we accept the Bayesian paradigm, as in this paper, then

the failure of group beliefs to obey conditionalization is a death penalty for the

averaging rule, so that we must search for other pooling rules, as done by Russell

et al. (2015) and the present paper.

The second challenge pertains to the question of what information learning

actually means for a group. Who learns? I propose to distinguish between public

information (learnt by all members), private information (learnt by only one

member), and partially spread information (learnt by some but not all members).

The question is for which type(s) of information to require Bayesian revision of

group beliefs.

The third challenge pertains to the fact that some information might not be

representable by any event in the domain (algebra) on which credences are de-

fined. The group might learn that the radio forecasts rainy weather, but it might

hold credences only relative to ‘weather events’, not ‘weather-forecast events’. In

such a case ordinary Bayesian revision is not even defined. Yet a generalized

form of Bayesian revision can still be applied, as explained later. The question is

whether to require Bayesian revision of group beliefs even for non-representable

information. This question is of course not strictly limited to group agents; it

could be raised for individual agents too. But the question is far more pressing

for group agents, because the domain of group beliefs (the algebra of events to

which the group assigns probabilities) tends to be much smaller than the domain

of an individual’s beliefs, so that information tends to be far less often repre-

sentable for groups than for individuals. This is true for practical and theoretical

reasons.2 It is thus urgent to account for non-representable information when

2In practice, it is hard or impossible to form group beliefs on more than a few events via

explicit aggregation or voting. So the domain of real-life group beliefs formed via voting is a

fortiori small. Also in theory group beliefs are defined for fewer events than individual beliefs.

Indeed, since group credences are obtained by aggregating individual credences, group credences
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properly studying the revision of group beliefs.

The second and third challenges pertain to the notion of information relevant

to groups. Instead of definitely opting for some notion of information, I will

consider different notions: public representable information, private representable

information, public non-representable information, and so on. Each type of infor-

mation considered will give rise to a specific form of group Bayesianism, requiring

Bayesian conditionalization on information of this type.

The paper makes a conceptual and a mathematical contribution. The con-

ceptual contribution is to lay out a taxonomy of six kinds of group Bayesianism,

as just indicated. The mathematical contribution is to determine those credence

pooling rules which guarantee group Bayesianism of each given sort. This is done

in six theorems, one for each kind of group Bayesianism. These theorems re-

spond to the first challenge, and do so for different types of group Bayesianism,

i.e., different positions one might take relative to the second and third challenges.

Earlier work on opinion pooling has already applied the Bayesian paradigm

to groups; see in particular Madansky’s (1964) “external Bayesianity”, Dietrich’s

(2010) “Bayesian group belief”, Russell et al.’s (2015) “groupthink”, and Diet-

rich and List’s (2016) “individualwise Bayesianity”. All this calls for an explicit

and unified theory of group Bayesianism(s), which I hope to deliver. Russell

et al.’s prize-winning contribution3 addresses a basic type of group Bayesian-

ism: the one for public representable information. The corresponding theorem

is essentially their central result, except from minor variations and corrections.

Madansky’s “external Bayesianity” captures another type of group Bayesianism:

the one for public non-representable information. Surprisingly, the correspond-

ing theorem seems to be new. Dietrich and List’s “individualwise Bayesianity”

captures group Bayesianism for private non-representable information; the cor-

responding theorem is a version of their theorem. By contrast, Morris’ (1974)

“supra-Bayesianism” should arguably not count as a theory of group Bayesian-

ism.4 Probabilistic opinion pooling is reviewed in Genest and Zidek (1986) and

Dietrich and List (2016).

can only exist where individual credences exist, so that the domain of group beliefs must be

at most as large as the intersection of the (often different) individual domains of beliefs. That

intersection might be very small.
3It was selected by The Philosopher’s Annual as one of the ten best philosophy papers in

2015.
4Supra-Bayesianism identifies group beliefs with the posterior beliefs of an external social

planner who treats the group members’ credences as evidence on which he conditionalizes his

own beliefs. One might firstly argue that this yields planner’s beliefs rather than genuine group

beliefs, since beliefs of a group agent should arguably supervene on beliefs of group members

and ignore beliefs of external individuals. One might secondly contest that supra-Bayesianism

yields “Bayesian” group beliefs: supra-Bayesian beliefs need not respond to new information in

the group via conditionalization, and violate all six types of group Bayesianism of this paper.
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2 The formal machinery of credence pooling

Consider a group of n individuals. We label them i = 1, 2, ..., n. The group size n

is any finite number greater than one. The individuals hold probabilistic beliefs

(credences) relative to certain events. As usual, the set of these events forms an

algebra, so that we can negate and conjoin events. To model this, I introduce

a set W of worlds, and define events as arbitrary sets of worlds A ⊆ W . The

number of worlds in W is finite and exceeds two; the infinite case is addressed in

Appendix A.5

A credence function is a probability function C on the set of events.6 The

probability C(A) of an event A is called the credence in A. The credence in a

world a ∈ W is of course defined as the credence in the corresponding event:

C(a) := C({a}). Note that
∑

a∈W C(a) = 1 and that the probabilities of worlds

fully determine those of all events.

The beliefs of the various group members are summarized in the ‘credence

profile’. Formally, a (credence) profile is a list C = (C1, ..., Cn) of credence

functions, where Ci represents the credences of member i. I use bold-face symbols

(C, C′, ...) to denote credence profiles as opposed to single credence functions.

For any so-denoted profile I denote its members by ‘un-bolding’ the symbol and

adding individual indices. So the profile C is made up of C1, ..., Cn, the profile

C′ of C ′1, ...., C
′
n, and so on. A credence profile C is coherent if at least one world

has non-zero probability under each individual credence function in C; otherwise

the profile is incoherent. Coherence is a plausible feature. For one would expect

that at least the true world – whichever world it is – receives non-zero probability

by everyone. After all no-one should have any (evidential or theoretical) grounds

for totally excluding the true world.

Given a credence profile, what should the group as a whole believe? An

answer to this question can be formally captured by a a pooling rule, i.e., a

function which aggregates the credence profile into group credences. Formally,

a pooling rule is a function ag mapping any credence profile C (from the rule’s

domain of applicability) to a ‘group’ credence function ag(C), denoted agC for

short. I now give four examples, representing different approaches or theories of

how group credences depend on individual credences:

• The averaging rule defines the group credence in an event A as the average

of individual credences: agC(A) = 1
nC1(A) + · · · + 1

nCn(A). The rule’s

domain of applicability is universal, i.e., consists of all credence profiles,

5Some readers might prefer the objects of beliefs to be propositions; they should simply

reinterpret events as propositions. Others might not like modelling events (or propositions) as

sets of worlds; I work with sets of worlds following common practice, but nothing hinges on this.
6Technically, it is a function C mapping events to numbers in [0, 1] such that C is additive

(i.e. C(A ∪B) = C(A) + C(B) whenever A ∩B = ∅) and C(W ) = 1.
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since averages of probability functions are always well-defined probability

functions.

• More generally, the weighted averaging rule with weights w1, ..., wn ≥ 0

of sum one is the rule which defines the group credence in an event A as

the weighted average of individual credences: agC(A) = w1C1(A) + · · · +
wnCn(A). The rule again applies to all credence profiles. Setting all weights

to 1
n yields the ordinary averaging rule.none Weighted averaging goes back

to Stone (1961) or even Laplace.

• The geometric rule defines the group credence in a world a as the (re-scaled)

geometric average of individual credences: agC(a) = k[C1(a)]1/n · · · [Cn(a)]1/n,

where k is a profile-dependent scaling factor determined such that the to-

tal probability of worlds is one (so k = 1/
∑
b∈W [C1(b)]1/n···[Cn(b)]1/n). The

rule’s domain of applicability is not universal. It includes only the coherent

credence profiles, because for incoherent profiles C the geometric average

[C1(a)]1/n · · · [Cn(a)]1/n is zero at all worlds a and so cannot be re-scaled to

a probability function. The definition focuses on group credences in worlds,

but group credences in events follow automatically by summing across cor-

responding worlds.

• More generally, the weighted geometric rule with weights w1, ..., wn ≥ 0 de-

fines the group credence in a world a by a (re-scaled) weighted geometric ex-

pression: agC(a) = k[C1(a)]w1 · · · [Cn(a)]wn , where k is again a scaling fac-

tor ensuring a total probability of one (so k = 1/
∑
b∈W [C1(b)]w1 ···[C(b)]wn). The

rule applies only to coherent credence profiles to ensure well-definedness.

The weights w1, ..., wn might or might not sum to one. Setting all weights

to 1
n yields the ordinary geometric rule.none Weighted geometric rules are

often attributed to Peter Hammond.

• The multiplicative rule defines the group credence in a world a as the

(re-scaled) product of individual credences: agC(a) = kC1(a) · · ·Cn(a),

where k is a scaling factor ensuring a total probability of one (so k =

1/
∑
b∈W C1(b)···Cn(b)). The rule applies only to coherent credence profiles,

so that the product is non-zero at some world and can thus be re-scaled.

The rule is studied in Dietrich (2010) and Dietrich and List (2016). It is

equivalent to weighted geometric pooling with each weight set to one.

3 Bayesian conditionalization for groups

Bayesianism requires that an agent who learns an event E revises his credence

function C by adopting the (conditional) credence function C ′ = C(·|E) which to
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any event A assigns the conditional probability C(A|E) = C(A∩E)
C(E) . This assumes

that C(E) 6= 0 to ensure that conditionalization is defined. Henceforth, expres-

sions like ‘conditionalizing the credence function C on E’ and ‘conditionalization

of C on E’ will denote that the conditional credence function C(·|E) is being

formed, and a fortiori that C(E) 6= 0.

Like Russell et al. (2015), I apply the requirement of Bayesian conditional-

ization to groups: group credences should change by conditionalization whenever

a new event E is learnt. So the group’s new credences which aggregate the

post-information profile C′ must be obtainable by conditionalizing the group’s

old credences which aggregate the pre-information profile C. Formally: agC′ =

agC(·|E). In other words, Bayesian revision and aggregation commute, as il-

individual 
credences 

new individual 
credences 

information learning 
via Bayes’ rule 

 

group 
credences 

new group 
credences 

information learning 
via Bayes’ rule 

 

aggregation 
via the pooling rule 

 

aggregation 
via the pooling rule 

 

Figure 1: Revising aggregate credences versus aggregating revised credences

lustrated in Figure 1. However, what does it mean that E is learnt? Russell

et al. take it for granted that information is public: all group members learn

E, so that the new credence profile is C′ = (C1(·|E), ..., Cn(·|E)). Alterna-

tively, E might be learnt just by individual 1, so that the new credence profile

is C′ = (C1(·|E), C2, ..., Cn) in which individuals 2, ..., n have kept their old cre-

dences. In full generality, E might be learnt by some arbitrary subgroup of one

or more individuals, so that only the credences of these individuals change.

These considerations suggest the following group Bayesianism axiom:

Conditionalization on information (Bay): If a credence profile C changes to

another one C′ by conditionalization of one or more individual credence functions

on an event E (and if the rule applies to C and C′), then the new group credence

function agC′ is the conditionalization of agC on E.

This axiom strengthens a group Bayesianism axiom restricted to public infor-

mation and introduced by Russell et al.:

Conditionalization on public information (BayPub): If a credence profile

C changes to another one C′ by conditionalization of all individual credence

functions on an event E (and if the rule applies to C and C′), then the new

group credence function agC′ is the conditionalization of agC on E.
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A third group Bayesianism axiom focuses on private information:

Conditionalization on private information (BayPri): If a credence profile

C changes to another one C′ by conditionalization of exactly one individual

credence function on an event E (and if the rule applies to C and C′), then the

new group credence function agC′ is the conditionalization of agC on E.

All three incarnations of group Bayesianism are prima facie of interest and

have their privileged contexts of application, as argued in Section 8. Before

exploring each axiom formally, let me give five arguments for why non-public

information matters.

First, the Bayesian paradigm requires conditionalization as the universal be-

lief revision policy. There is no principled Bayesian reason for suddenly lifting the

requirement if information is not public. Any failure to conditionalize on infor-

mation is un-Bayesian, regardless of how many or few people have access to the

information. The question of how widely information spreads is epistemically ir-

relevant, at least to Bayesians. Information matters not in virtue of being widely

accessible, but in virtue of being true, where truth is ascertained as soon as one

individual fully acquires the information. Repeated observation of the exactly

same information (by different people) is no better than one-time observation, in

vague analogy to the old evidence problem (e.g., Glymour l980, Hartmann and

Fitelson forth.)

Second, let us see where radical Bayesianism takes us (without necessarily

committing to it). A full-fledged Bayesian has a highly subjective notion of

information. He will submit that information is almost never public and hence

that the axiom BayPub neglects most instances of information learning in groups.

This is because two individuals almost never learn precisely the same event: even

when Anne and Peter both see the car arriving, they will have seen the car from

slightly different angles and will thus have observed (and conditionalized on)

slightly different events. This of course assumes that information is described in

full detail, which renders the algebra of events and thus the set of possible worlds

W very rich and complex – an unrealistic but standard Bayesian assumption.

Third, groups which fail to conditionalize on information are Dutch-bookable

regardless of whether the information is public. Russell et al. put forward the

Dutch book argument to defend conditionalization on public information. The

argument is easily adapted to non-public information: it suffices to choose the

bookie as someone who learns the (non-public) information, possibly even a group

member.

Fourth, differences in information across a group constitute a salient real-life

phenomenon which is at the heart of theories of group agency, multi-agent systems

and distributive cognition. Groups are often said to know more than each of
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their members. In our framework, this means that group credences incorporate

all information held by at least one member, which immediately suggests the

axiom Bay. By contrast, the weaker axiom BayPub reflects the different idea

that a group knows only what all (not some) members know, so that the group

typically knows much less than each of its members.

Fifth, it seems ad hoc to exclude learning of non-public information, i.e.,

asymmetries in learning across individuals, because on the other hand we do

allow asymmetries in status-quo knowledge. Status-quo knowledge can differ

across individuals since in a credence profile C different individuals can be certain

of (i.e., assign probability one to) different events. So the framework is geared

towards knowledge asymmetries at any given point of time, i.e., within any given

profile. If individuals always learned the same things, one wonders how they

could end up knowing different things.

4 The implication of Bayesian conditionalization for

groups

What does group Bayesianism in each of the above versions Bay, BayPub or

BayPri imply for how group beliefs must be formed, i.e., how the pooling rule must

look like? To see how severely group Bayesianism constrains the pooling rule, note

that once we have fixed how a given profile C is aggregated, we are no longer

free in how to aggregate any other profile C′ which can arise from C through

information learning: agC′ must notoriously be given by conditionalization of

agC on the information.

Before establishing the precise implication of each axiom, I clarify the logi-

cal relation between the three axioms. Surprisingly, BayPri is only apparently

weaker than Bay: groups which conditionalize on private information must also

conditionalize on non-private information (this will no longer be true for non-

representable information, as seen later). By contrast, BayPub is a genuinely

weaker axiom. The logical gap between BayPub and Bay is filled by a crisp

axiom:

Certainty adoption (Cert): Events which are certain to some group member

are certain to the group, i.e., for all credence profiles profiles C (in the rule’s

domain) and events E, if Ci(E) = 1 for some individuals i, then agC(E) = 1.

Cert is a plausible axiom in groups of rational agents, because if some group

member is fully certain of E, then he presumably has definitive evidence or argu-

ments for E, so that the group has reason to adopt that certainty. The following

result summarizes the mentioned logical relationships:
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Proposition 1. A rule for pooling coherent credence profiles satisfies Bay if and

only if it satisfies BayPri, and if and only if it satisfies both BayPub and Cert.

I now consider each of the three Bayesian axioms in turn and study its im-

plication. I shall use two auxiliary axioms which, broadly speaking, force the

pooling rule to be non-degenerate or well-behaved. The first auxiliary axiom

requires that if every group member is utterly ignorant, i.e., holds the uniform

credence function (which deems each world equally likely), then also the group

as a whole is utterly ignorant:

Indifference preservation (Indiff): If C is the credence profile in which the

individuals unanimously hold the uniform credence function (and if the rule ap-

plies to C), then the group credence function agC is also uniform.

The second well-behavedness axiom requires group credences to depend con-

tinuously on individual credences: small changes in individual credences should

never lead to jumps in group credences. Formally, an infinite sequence of credence

functions C1, C2, ... converges to a credence function C if for every event A the

sequence of probabilities C1(A), C2(A), ... converges to C(A).

Continuity (Contin): If a sequence of credence profiles C1,C2, ... converges

in each individual component to a credence profile C (and if the rule applies to

all these profiles), then the sequence of group credence functions agC1, agC2, ...

converges to agC.

By the first theorem, the full-blown Bayesian axiom Bay (along with the two

well-behavedness axioms) forces the pooling rule to be a weighted geometric rule

in which every individual has non-zero weight, i.e., ‘has a say’:

Theorem 1. The only rules for pooling coherent credence profiles satisfying Bay,

Indiff and Contin are the weighted geometric rules giving non-zero weight to each

individual.

So all pooling rules except weighted geometric rules with non-zero weights

are un-Bayesian (by violating Bay) or degenerate (by violating Indiff or Contin).

For instance, all weighted or unweighted averaging rules and all weighted geo-

metric rules giving zero weight to someone violate Bay; but they satisfy Indiff

and Contin. What is the intuition behind the fact that the three axioms are

jointly necessary and sufficient for the rule to be of this special geometric sort?

Sufficiency is hard to prove. As for necessity, one easily checks that a weighted

geometric rule is continuous and preserves indifference. Why does it also sat-

isfy Bay, assuming no individual has zero weight? Suppose certain individuals

learn an event E, so that the profile changes. For every individual i who has
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learnt E, his credences in worlds change to zero for worlds outside E and change

proportionally for worlds inside E – this is how conditionalization works. As a

result, the expression [C1(a)]w1 · · · [Cn(a)]wn changes to zero for worlds a outside

E and changes proportionally for worlds a inside E. This implies that group

credences change via conditionalization on E, as required by Bay. It is crucial

in this argument that every weight wi is non-zero: otherwise it can happen that

everyone i who learns E has weight wi = 0, so that his belief revision leaves the

wi-th power of his credences in worlds unchanged. For p0 is always defined as 1,

even for p = 0.

Next we turn to the weaker group Bayesianism axiom BayPub which allows

non-Bayesian revision in the face of non-public information. Being weaker, this

requirement opens the door to a larger class of pooling rules, namely by allowing

geometric rules with some zero weighs:

Theorem 2. The only rules for pooling coherent credence profiles satisfying Bay-

Pub, Indiff and Contin are the weighted geometric rules giving non-zero weight

to at least one individual.

Why does a weighted geometric rule meet BayPub as soon as one individual

i gets non-zero weight? In short, public information E is then guaranteed to be

observed by someone with non-zero weight, which suffices to push the group’s

credence in worlds outside E to zero.

Theorem 2 is essentially Russell et al.’s central theorem (their ‘Fact 4’), to

which it however adds three necessary qualifications and one optional amend-

ment. The optional amendment is that I impose indifference preservation instead

of Russell et al.’s neutrality axiom, since indifference preservation is less demand-

ing and achieves the same.7 As for the three qualifications, firstly I assume the

number of worlds to be finite rather than possibly countably infinite, to ensure

that weighted geometric rules are well-defined for any non-negative weights; in

Appendix A I show how the countably infinite case can be handled.8 Secondly,

I do not permit all weighted geometric rules, but only those with at least one

7Indifference preservation is a particularly weak sort of unanimity axiom, since it requires

preserving not all unanimously held credence functions, but only the uniform one. The neu-

trality axiom requires treating all worlds equally. Formally, whenever π is a permutation of the

set of worlds (which allows us to transform any credence function C into a new one Cπ given

by Cπ(a) = C(π(a)) for all worlds a), then transforming the aggregate credence function agC

is equivalent to aggregating the profile Cπ of transformed credence functions: (agC)π = agCπ.

Neutrality implies indifference preservation because transforming the uniform credence function

under a permutation yields the same uniform credence function.
8The problem with applying the notion of geometric rules naively to a countably infinite set

of worlds is that if the weights w1, ..., wn sum to a value below one, then for certain coherent

credence profiles C the geometric average [C1(a)]w1 · · · [Cn(a)]wn has an infinite sum across

worlds a and thus fails to be rescalable such that the sum across worlds is one (defining the

scaling factor as k = 1
∞ = 0 does not do). See Appendix A for details.
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non-zero weight.9 Thirdly, I allow only coherent credence profiles. The third

qualification is already introduced retrospectively by Russell et al. in their proof

appendix where they restate their result differently. Some of their readers might

come to think that the result is essentially true even without excluding incoher-

ent profiles, i.e., that the result is true without domain restriction provided one

suitably extends weighted geometric rules to incoherent profiles. This is not the

case. Without domain restriction the axioms are inconsistent with all weighted

geometric rules (however extended) except from the dictatorship-like rules assign-

ing zero weight to all but one individual. I return to the aggregation of possibly

incoherent credence profiles in Section 7, where I show that group Bayesianism

is essentially impossible in ‘incoherent groups’.

Finally, what is the implication of requiring group Bayesianism relative to

private information? Since BayPri is equivalent to Bay (by Proposition 1), the

implication of BayPri is precisely that of Bay. So we can restate Theorem 1 using

BayPri instead of Bay:

Theorem 3. The only rules for pooling coherent credence profiles satisfying

BayPri, Indiff and Contin are the weighted geometric rules giving non-zero weight

to each individual.

5 Bayesian conditionalization for groups facing non-

representable information

A key idealization often made by Bayesians is that any information an agent

might ever learn is representable as an event within the domain (algebra) where

the agent assigns probabilities. This ensures that Bayes’ rule in its ordinary form

applies. Real-life information need not be representable in this way, in particular

in the context of group agents which tend to hold beliefs relative to a small event

algebra that excludes much of what can be learnt. Taking up an introductory

example, the group might hold credences only relative to weather events; so

worlds in W describe the weather, nothing else. The information that the radio

forecasts rain is not representable as an event E ⊆ W since worlds in W do not

describe weather forecasts. Yet credences should clearly be revised, presumably

by raising the probability of the (representable) event of rain.

9The statement of Russell et al.’s Fact 4 (“The only rules which obey [the axioms] are

Weighted Geometric Rules”) allows for two readings: either the rules obeying the axioms are

claimed to be all the Weighted Geometric Rules (as suggested by the authors’ claim to char-

acterize weighted geometric pooling), or the rules obeying the axioms are claimed to be among

the Weighted Geometric Rules (as suggested by the authors’ restatement of their Fact 4 in their

appendix). Under the first reading Theorem 2 corrects their Fact 4. Under the second reading

Theorem 2 strengthens their Fact 4 by turning an implication into an equivalence, i.e., into a

characterization result.
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How should credences be revised based on non-representable information?

There is a well-known Bayesian answer: model such information as a likelihood

function rather than an event and apply Bayes’ rule in its generalized form.

Although all this is known to Bayesian statisticians, a short introduction is due.

A likelihood function is an arbitrary function L from worlds to numbers in [0, 1].

One interprets L as modelling some information and L(a) as being the probability

of that information given that the world is a. In the weather example, L(a) is the

probability that the radio forecasts rain (the information) given that the world

is a. Since weather forecasts are usually right, L(a) is near 1 for rainy worlds a

and near 0 for non-rainy worlds a.

Given how likelihood functions are interpreted, it is clear how one should

conditionalize on them, i.e., how Bayes’ rule in its generalized version works.

An agent who learns a likelihood function L should revise his credence function

C by adopting the (conditional) credence function C(·|L) which to every world

a assigns the probability C(a|L) = C(a)L(a)∑
b∈W C(b)L(b) . One immediately recognizes

Bayes’ rule, given that L(a) stands for the probability of information conditional

on a. The conditional credence function C(·|L) is only defined if the likelihood

function L is coherent with C, i.e., if there is at least one world where both L

and C are non-zero, ensuring that
∑

b∈W C(b)L(b) 6= 0. Intuitively, coherence of

L with C means that the information is not ruled out by the initial credences.

Hereafter, expressions like ‘conditionalizing C on L’ and ‘conditionalization of C

on L’ will denote that the conditional credence function C(·|L) is being formed,

and a fortiori that L is coherent with C.

Likelihood functions generalize events as a model of information, and Bayes’

rule for likelihood functions generalizes Bayes’ rule for events. Indeed, to any

event E corresponds a simple likelihood function L for which L(a) can only be 1

or 0, depending on whether a is in E or outside E; and conditionalizing on E is

equivalent to conditionalizing on the corresponding likelihood function L, as one

easily checks.

It is natural to require groups to follow Bayes’ rule not just if an event is

learnt, but more generally if a likelihood function is learnt. This requirement

can once again be fleshed out in three different ways, depending on whether the

likelihood function is learnt by any subgroup of individuals, or by all individuals

(public information), or by just one individual (private information). The three

resulting axioms are counterparts of the earlier axioms Bay, BayPub and BayPri.

They differ from their counterparts only in that the learnt information is given by

a likelihood function L rather than an event E. Being based on a more general

notion of information to be called L-information, each new axiom is strictly

stronger than its counterpart, as indicated by the ‘+’ in the label of each new

axiom.
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Conditionalization on L-information (Bay+): If a credence profile C changes

to another one C′ by conditionalization of one or more individual credence func-

tions on a likelihood function L (and if the rule applies to C and C′), then the

new group credence function agC′ is the conditionalization of agC on L.

Conditionalization on public L-information (BayPub+): If a credence

profile C changes to another one C′ by conditionalization of all individual cre-

dence functions on a likelihood function L (and if the rule applies to C and C′),

then the new group credence function agC′ is the conditionalization of agC on

L.

Conditionalization on private L-information (BayPri+): If a credence

profile C changes to another one C′ by conditionalization of exactly one individual

credence function on a likelihood function L (and if the rule applies to C and

C′), then the new group credence function agC′ is the conditionalization of agC

on L.

6 The implication of Bayesian conditionalization for

groups facing non-representable information

We have seen in Section 5 that a group which obeys ordinary Bayesian condition-

alization – Bayesian conditionalization on events – must form its credences in a

particular way that depends on the chosen group Bayesian axiom (Bay, BayPub

or BayPri). What happens to the pooling rule if we impose Bayesian revision

even for non-representable information, i.e., if we require Bay+, BayPub+ or

BayPri+?

As in Section 5, I start the analysis by clarifying the logical relationship be-

tween the three axioms at stake. The situation changes dramatically compared to

the earlier axioms Bay, BayPub and BayPri. While the earlier axioms are highly

compatible with each other (by Proposition 1), the new axioms are mutually

incompatible:

Proposition 2. No rule for pooling coherent credence profiles satisfies both Bay-

Pub+ and BayPri+.

So, in short, group credences cannot incorporate both public and private

L-information in a proper Bayesian way. As an immediate consequence, the full-

blown axiom Bay+, which simultaneously strengthens BayPub+ and BayPri+,

is internally inconsistent:

Theorem 4. No rule for pooling coherent credence profiles satisfies Bay+.
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This striking impossibility does not require imposing any of the well-behavedness

axioms Indiff and Contin: Bay+ is by itself inconsistent, hence untenable as a

normative principle for group beliefs. How should we interpret this? On one

interpretation, groups simply cannot be ‘fully Bayesian’: their belief revision

policy cannot be as ideally rational as that of single individuals. But there is

a more nuanced interpretation. Recall that the need to conditionalize on non-

representable information came from a lack of Bayesian rationality in the first

place: an inability to assign probabilities to ‘everything’, so that the set of events

under consideration – the credence domain – fails to encompass all relevant infor-

mation. I gave an example where the credence domain fails to contain an event

representing the information of a rainy weather forecast. If by contrast the cre-

dence domain is universal, as many Bayesians routinely assume, then all relevant

information is by definition representable by an event in the credence domain,

and we lose the justification for introducing L-information and imposing Bay+

because the initial axiom Bay already covers all relevant information. In sum,

Bay+ becomes normatively mandatory only when and because another Bayesian

requirement – that of a universal credence domain – is violated. Accordingly,

Theorem 4 does not tell us that groups cannot be fully Bayesian, but that they

cannot be ‘semi-Bayesian’ by failing to entertain a universal credence domain

while properly conditionalizing on information outside the credence domain.

The impossibility disappears once we restrict attention to public or to private

L-information. Indeed groups can follow Bayesian conditionalization on such

information, by using a pooling rule of a quite particular kind. I begin with

public L-information:

Theorem 5. The only rules for pooling coherent credence profiles satisfying Bay-

Pub+, Indiff and Contin are the weighted geometric rules whose individual weights

sum to one.

The comparison to Theorem 2 shows that BayPub+ constrains the pooling

rule much more than BayPub does: the individual weights must now sum to one.

Surprisingly, this result seems to be new, although its central axiom BayPub+

has already been studied under the label “external Bayesianity”, though in a

different framework (Madansky 1964).10

10How could it have escaped the statistics literature that this axiom (jointly with well-

behavedness axioms) forces to certain geometric pooling rules? Presumably the reason is that

the axiom is usually stated and analysed in a different framework in which credence functions and

likelihood functions must take non-zero values at all worlds. This excludes representable infor-

mation, since a likelihood function corresponding to representable information, i.e., to an event

E, takes the value 0 outside E and is thus excluded (unless E = W ). So the classic axiom of ex-

ternal Bayesianity actually differs from BayPub+ in that it covers only non-representable rather

than also non-representable information. The analogue of Theorem 5 in that classic framework
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Finally, how can groups follow Bayesian conditionalization on private gener-

alized information? They can do so in precisely one way, namely by using the

multiplicative pooling rule, i.e., the special weighted geometric pooling in which

each individual gets weight one.

Theorem 6. The only rule for pooling coherent credence profiles satisfying BayPri+

and Indiff is the multiplicative rule.

The comparison of Theorems 5 and 6 shows that it makes a considerable

difference whether the group wishes to properly incorporate public or private

L-information. In the former case the weights must sum to one, in the latter

they must all equal one. This gives an idea of why the two axioms are mutually

inconsistent (see Proposition 2). Theorem 6 does not involve the axiom Contin.

It is a version of a result by Dietrich and List (2016) in a different framework.11

7 The impossibility of group Bayesianism for incoher-

ent groups

Our analysis has so far been limited to rules that pool coherent credence profiles,

in which at least one world is assigned non-zero probability by everyone. In

short, we have excluded radical disagreement. Incoherent profiles are peculiar

in that they violate the idea that some world is ‘true’ and receives non-zero

subjective probability from everyone. Can one design pooling rules that are

Bayesian and apply also to incoherent credence profiles? The answer is negative:

if we permit incoherent profiles, there do no longer exist any non-degenerate

Bayesian rules – regardless of which of our six Bayesian axioms is taken to define

group Bayesianism.

To state the result formally, I first define two kinds of degenerate rules for

pooling arbitrary credence profiles. A dictatorship is a rule such that the group

always adopts the credences of a fixed group member. Formally, there is an

individual i (the dictator) such that agC = Ci for all credence profiles C. A

power dictatorship is a rule which, like an ordinary dictatorship, makes group

credences depend solely on a fixed individual. But the group might not adopt

that individual’s credences as such: it might adopt a transformed version of

his credences, obtained by raising the probabilities of worlds to some power.

Formally, a power dictatorship is a rule for which there exists an individual i

(the power dictator) and a number w > 0 such that for any credence profile C

the group credences in worlds a ∈ W are given by agC(a) = k[Ci(a)]w, where

is false, because the (restated) axioms can be met by generalized versions of weighted geometric

rules whose weights can depend on the profile in certain systematic ways.
11Their framework takes all credence functions and likelihood functions to have non-zero

values at all worlds. This difference in framework has no consequence for the result.
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k > 0 is a scaling factor ensuring that probabilities of worlds sum to one (i.e.,

k =
∑

b∈W [Ci(b)]
w). In case w = 1 we obtain a regular dictatorship.

Theorem 7. Among all rules for pooling arbitrary (possibly incoherent) credence

profiles,

(a) no rules satisfy the axioms stated in Theorem 1, 3, 4, or 6, respectively,

(b) only the power dictatorships satisfy the axioms stated in Theorem 2,

(c) only the dictatorships satisfy the axioms stated in Theorem 5.

Let me paraphrase this result. If we seek to aggregate arbitrary credence pro-

files, then only power dictatorships can properly handle public information, only

dictatorships can properly handle public L-information, and no rules whatsoever

can properly handle the other four types of information.

8 Conclusion: each group Bayesianism matters

I have argued that there are different types of group Bayesianism, depending on

the kind of information on which one requires groups to conditionalize. Each form

of group Bayesianism is compatible with certain credence pooling rules, deter-

mined in Theorems 1–6. Specifically, group beliefs must be formed via a weighted

geometric rule, where the weights must obey certain conditions depending on the

type of group Bayesianism in question. Group Bayesianism however becomes

impossible if the members can disagree radically, i.e., if the credence profile can

be incoherent (Theorem 7).

Which of the six group Bayesian axioms is the right rendition of group

Bayesianism? The answer depends on the group or application in question. I

propose the following stylized classification. The first dimension of classification

concerns how widely information can spread in the group in question:

• Fully symmetrically informed groups are idealized groups whose members

have exactly the same access to new information (perhaps due to perfect de-

liberation and information sharing). New information is then by definition

public, and the Bayesian axiom need only quantify over public information.

This leads to BayPub or BayPub+.

• Fully asymmetrically informed groups are idealized groups whose members

never learn the same information. New information is then by definition pri-

vate, and the Bayesian axiom need only quantify over private information.

This leads to BayPri or BayPri+.

• Groups with arbitrary information spread are groups without any restric-

tion on how widely new information is accessible. New information may
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thus be acquired by any subgroup, and the Bayesian axiom should quantify

over information acquired by any subgroup. This leads to Bay or Bay+.

The second dimension of classification concerns the size of the domain (algebra)

of events on which the group in question holds credences:

• Groups with universal credence domain are idealized groups in which the

domain of credences comprises everything relevant to the group in ques-

tion, including any information that can be acquired. New information is

thus always representable, and the Bayesian axiom need only quantify over

representable information. This leads to Bay, BayPub or BayPri.

• Groups with limited credence domain are groups in which the credence

domain fails to encompass certain information that can be acquired in the

group in question. New information can thus be non-representable, and the

Bayesian axiom should quantify over generalized information. This leads

to Bay+, BayPub+ or BayPri+.
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Figure 2: Contexts of application and their corresponding group Bayesianism

axioms and pooling rules

Figure 2 summarizes the stylized classification of groups or applications, in each

case displaying the relevant group Bayesianism axiom and the corresponding

pooling rule(s) according to Theorems 1–6. This shows how strongly the ax-

iomatic rendition of group Bayesianism and the pooling rule should depend on

the application.

A Generalization to infinitely many worlds

The main text took the number of worlds (hence, of events) to be finite. This

calls for a generalization. In both appendices let the set of worlds be countable,

i.e., finite or countably infinite. To extend our formal results to that case, we

must do two things: generalize the notion of weighted geometric pooling, and
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adapt the axiom of Indifference Preservation. I shall do both things in turn. But

first let me anticipate what is thereby achieved:

Remark 1. All formal results of the main text (the ‘theorems’ and ‘propositions’)

hold more generally for countably many worlds if weighted geometric rules are

generalized as below and Indifference Preservation is replaced by Weak Indiffer-

ence Preservation defined below.

Generalizing geometric rules: What can happens if we naively apply our

earlier definition of the weighted geometric rule to infinitely many worlds? Given

weights w1, ..., wn ≥ 0 and a (coherent) credence profile C = (C1, ..., Cn), we first

form for each world a the weighted geometric average [C1(a)]w1 · · · [Cn(a)]wn . The

trouble arises as we attempt to normalize this expression to a probability mass

function: normalization fails when the sum
∑

a∈W [C1(a)]w1 · · · [C(a)]wn is infi-

nite. To see that the sum can be infinite, let the set of worlds be W = {1, 2, 3, ...},
let the sum of weights be w1 + · · · + wn = 1

2 , and let each individual i have the

same credence function assigning probability ca−2 to each world a, where c is

a positive constant which ensures that the probabilities of worlds sum to one.

The weighted geometric average then takes the form [C1(a)]w1 · · · [Cn(a)]wn =(
ca−2

)w1+···+wn =
√
ca−1, so that

∑
a∈W [C1(a)]w1 · · · [Cn(a)]wn =

√
c
∑∞

a=1 a
−1 =

√
c∞ = ∞. Normalization is thus impossible here. However normalization is

guaranteed to be possible for certain choices of the weights:

Proposition 3. If the number of worlds is (countably) infinite, the following two

conditions on weights w1, ..., wn ≥ 0 are equivalent:

• The weighted geometric average [C1(a)]w1 · · · [Cn(a)]wn is normalizable (i.e.,

has finite sum over worlds a) for each coherent credence profiles (C1, ..., Cn).

• The sum of weights satisfies w1 + · · ·+ wn ≥ 1.

This tells us that for infinitely many worlds weighted geometric pooling is

meaningful if and only if the sum of weights is at least one. I therefore generalize

the notion of geometric rules as follows to the countable case: a weighted geometric

rule is defined

• for arbitrary weights w1, ..., wn ≥ 0 if the number of worlds is finite,

• for weights w1, ..., wn ≥ 0 of sum at least one if the number of worlds is

countably infinite,

where for each coherent credence profile the group credence in a world a is de-

termined in the usual way, i.e., as the normalized weighted geometric average

credence in a. We can now talk meaningfully about weighted geometric rules for

countable W , bearing in mind that the weights by definition have sum at least
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one if W is infinite. Note that if we were to require (rather than permit) W to

be countably infinite, then we could simplify Theorem 2: we would no longer

need to require that at least one individual gets non-zero weight, as this already

follows from the sum of weights being at least one.

Adapting Indifference Preservation: The axiom of Indifference Preservation

(Indiff) is meaningless for infinitely many worlds, because the uniform distribu-

tion does then not exist. Indeed, one cannot assign the same probability x to

infinitely many worlds, as the sum of probabilities would not be one, but infinite

(if x > 0) or zero (if x = 0). We can instead use this axiom:

Weak indifference preservation (Indiff*): For all worlds a and b, unanimous

indifference between a and b is at least sometimes preserved, i.e., there is at least

one credence profile C (in the rule’s domain) such that every individual i satisfies

Ci(a) = Ci(b) 6= 0 and the group satisfies agC(a) = agC(b).

This axiom has a double advantage over ordinary Indifference Preservation: (i) it

stays meaningful for infinitely many worlds, and (ii) it is weaker for finitely many

worlds since the credence profile where everyone holds uniform beliefs automati-

cally has the property required in Indiff*.12 Our results could use Russell et al.’s

‘neutrality’ axiom instead of Indiff*; that axiom is however much stronger.

B Proofs

I now prove all results from the main text and Appendix A. The results from the

main text will be proved in their generalized version defined in Appendix A. So

throughout the set of worlds W is countable (finite or countably infinite), Indiff*

is used instead of Indiff, and the notion of weighted geometric rules is extended

to the infinite case in the above-defined way (so that weights must sum to at least

one in the infinite case).

Conventions: The conditionalization of a credence function C on an event E

or a likelihood function L will (when existent) be denoted by C|E and C|L,

respectively. As usual, the support of a credence function C is supp(C) := {a ∈
W : C(a) 6= 0}.

B.1 The propositions

Proof of Proposition 1. Consider a rule ag for pooling coherent profiles. Axiom

Bay obviously implies BayPub and BayPri. The proof is completed by showing

three claims.
12Strictly speaking, Indiff* is weaker under the minimal assumption that the profile of uniform

credence functions belongs to the rule’s domain.
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Claim 1: BayPri implies Bay.

Assume BayPri and consider coherent profiles C and C′ such that C′ arises

from C by conditionalization of the credence functions of m individuals on an

event E, where 1 ≤ m ≤ n. Without loss of generality, suppose these m individ-

uals are the individuals 1, ...,m. Note that for all j ∈ {0, 1, ...,m} the credence

profile Cj := (C1|E, ..., Cj |E,Cj+1, ..., Cn) is coherent. Moreover, each profile

Cj with j 6= 0 arises from Cj−1 by conditionalization of exactly one individual

credence function on E. So we can apply BayPri repeatedly:

agCm = (agCm−1)|E

= ((agCm−2)|E)|E = (agCm−2)|E

= ...

= ((agC0)|E)|E = (agC0)|E.

Since C0 = C and Cm = C′, we have shown that agC′ = (agC)|E. This proves

Bay.

Claim 2: BayPri implies Cert.

Assume BayPri. Let C be a coherent profile, E an event and i an individual

such that Ci(E) = 1. So the profile arising from C by conditionalization of

i’s credence function on E is C itself. Hence by BayPri agC = (agC)|E. So

agC(E) = 1, proving Cert.

Claim 3: BayPub and Cert together imply BayPri.

Assume BayPub and Cert. Let a coherent profile C′ arise from another one C

by conditionalization of an individual i’s credence function an event E. Let C′′ be

the profile obtained from C or equivalently from C′ by conditionalization of every

credence function on E. Note that C′′ is coherent given the way it is obtained

from the coherent profile C′ in which an individual assigns probability one to E.

Since in C′ individual i assigns probability one to E, by Cert agC′(E) = 1. Now

agC′ = (agC′)|E = agC′′ = (agC)|E,

where the first equation holds as agC′(E) = 1, and the second and third because

of BayPub. We have shown that agC′ = (agC)|E, proving BayPri. �

Proof of Proposition 2. For a contradiction, let some rule ag for pooling

coherent profiles satisfy BayPub+ and BayPri+. Consider a coherent profile C

in which every credence function has full support, and let L be a non-constant

likelihood function with full support. For all j ∈ {0, 1, ..., n} define the credence

profiles Cj := (C1|L, ..., Cj |L,Cj+1, ..., Cn). Note that all Cj are coherent. By

BayPub+, agCn = (agC)|L. On the other hand, repeated application of BayPri+

20



yields agCn = (agC)|Ln, because

agCn = (agCn−1)|L

= ((agCn−2)|L)|L = (agCn−2)|L2

= ...

= ((agC0)|Ln−1)|L = (agC0)|Ln = (agC)|Ln.

As agCn = (agC)|L and agCn = (agC)|Ln, we have (agC)|L = (agC)|Ln. It

follows that L is proportional to Ln, by definition of conditionalization on a

likelihood function (and by the fact that agC has full support, which holds via

Lemma 3 below as all Ci have full support). So L must be a constant function,

in contradiction to our assumption. �

Proof of Proposition 3. Let W be countably infinite, and consider weights

w1, ..., wn ≥ 0 whose sum is denoted w.

1. First assume w < 1. If w = 0, so that w1 = · · · = wn = 0, then normal-

ization fails for all profiles C since
∑

a∈W [C1(a)]w1 · · · [Cn(a)]wn =
∑

a∈W 1 =∞.

Now let w > 0. To show that normalizability can fail, I give a counterexample

generalizing that stated in Appendix A. Without loss of generality let worlds be

natural numbers: W = {1, 2, 3, ...}. Consider the credence profile C in which

each Ci assigns probability ca−1/w to world a, where c is a normalization con-

stant ensuring that probabilities of worlds sum to one: c = 1/
∑∞
a=1 a

−1/w. This

uses the well-known fact that
∑∞

a=1 a
−1/w <∞ as 1/w > 1. So

∑
a∈W

[C1(a)]w1 · · · [Cn(a)]wn =
∞∑
a=1

(
ca−1/w

)w
= cw

∞∑
a=1

a−1 = cw∞ =∞.

Here
∑∞

a=1 a
−1 is the so-called harmonic series, which is well-known to have

infinite limit.

2. Now assume w ≥ 1, and consider any coherent profile C. I show normal-

isability by distinguishing between two cases.

Case 1 : w = 1. For any world a, we have [C1(a)]w1 · · · [Cn(a)]wn ≤ w1C1(a)+

· · · + wnCn(a) by the inequality between (weighted) geometric and arithmetic

means (e.g., Steele 2004). So∑
a∈W

[C1(a)]w1 · · · [Cn(a)]wn ≤
∑
a∈W

[w1C1(a) + · · ·+ wnCn(a)]

= w1

∑
a∈W

C1(a) + · · ·+ wn

∑
a∈W

Cn(a)

= w1 + · · ·+ wn = w = 1 <∞.
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Case 2: w > 1. I reduce this case to Case 1. For all worlds a and individuals

i we have [Ci(a)]wi ≤ [Ci(a)]
wi
w (as Ci(a) ≤ 1 and wi >

wi
w ). So∑

a∈W
[C1(a)]w1 · · · [Cn(a)]wn ≤

∑
a∈W

[C1(a)]
w1
w · · · [Cn(a)]

wn
w <∞,

where the last inequality holds by Case 1 applied to the new weights w1
w , ..., wnw

of sum one. �

B.2 Preparing the theorems’ necessity proofs

The following two lemmas will later allow us to prove that the axioms in our

theorems are necessary : each axiom in a theorem is satisfied by each particular

(weighted geometric) rule specified in that theorem.

Lemma 1. A weighted geometric rule satisfies

(a) Bay (or equivalently BayPri) if and only if all weights are non-zero,

(b) BayPub if and only if at least one weight is non-zero,

(c) BayPub+ if and only if the weights sum to one,

(d) BayPri+ if and only if all weights are one, i.e., the rule is multiplicative.

Proof. Consider a weighted geometric rule with weights w1, ..., wn. The proof

will be sketched informally.

(a) The proof that Bay holds if all wi are non-zero was already given (in-

formally) after Theorem 1. Conversely, if some individual’s weight is zero, then

conditionalizing his credence function on an event E never affects group credences,

so that Bay is violated.

(b) The proof that BayPub holds if some wi is non-zero was again given

informally after Theorem 2. Conversely, if all wi are zero, which by the way

implies that W is finite, then group credences are uniform regardless of the profile,

violating BayPub.

(c) Whenever one coherent credence profile C′ arises from another C by con-

ditionalization of all credence functions on a given likelihood function L, we have

(*) agC′ = (agC)|Lw1+···+wn , i.e., agC′ is the conditionalization of agC on the

likelihood function Lw1+···+wn . This is because, for appropriate normalization

constants k, k′, k′′ > 0, we have at all worlds a

agC′(a) = k[(C1|L)(a)]w1 · · · [(Cn|L)(a)]w1

= k′[C1(a)L(a)]w1 · · · [Cn(a)L(a)]wn

= k′[C1(a)]w1 · · · [Cn(a)]wn [L(a)]w1+···+wn

= k′′[(agC)|Lw1+···+wn ](a).
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Clearly, if w1 + · · ·wn = 1, then BayPub+ holds, as (*) reduces to agC′ =

(agC)|L. Conversely, assume BayPub+. Then, with C,C′, L as before, we have

agC′ = (agC)|L, and hence by (*) (agC)|L = (agC)|Lw1+···+wn . So L must be

proportional to Lw1+···+wn (assuming agC has full support, which we can ensure

by letting all credence functions in C have full support and applying Lemma 3

below). It follows that w1 + · · · + wn = 1 (assuming without loss of generality

that L was chosen to be non-constant).

(d) For any given individual i, whenever one coherent credence profile C′

arises from another C by conditionalization of i’s credence function on a likelihood

function L, we have (**) agC′ = (agC)|Lwi . The reason is analogous to that for

(*) in the proof of (c).

Now, if w1 = · · · = wn = 1, then BayPri+ holds, as (**) reduces to agC′ =

(agC)|L. Conversely, suppose BayPri+. With C,C′, L as before, agC′ = (agC)|L
by BayPri+. So, for all individuals i, we have (agC)|L = (agC)|Lwi by (**), im-

plying that wi = 1 by an argument parallel to that in the proof of (c).�

Lemma 2. Every weighted geometric rule satisfies Contin, Indiff (ifW is finite),

and Indiff*.

Proof. The elementary argument is left to the reader. �

B.3 Preparing the theorems’ sufficiency proofs

The next lemmas will help us show that the axioms in any of our theorems are

sufficient : they require the particular type of pooling rule claimed in each theo-

rem, respectively. Central steps of the argument, including the use of Cauchy’s

functional equation, correspond directly to steps in Russell et al.’s proof of their

“Claim 4”. Each lemma of this subsection assumes a rule ag for pooling coherent

credence profiles.

Lemma 3. For all coherent credence profiles C,

(a) under Bay, supp(agC) = ∩isupp(Ci),

(b) under any of the six Bayesian axioms, ∩isupp(Ci) ⊆ supp(agC) ⊆ ∪isupp(Ci).

Proof. Let C be a coherent credence profile. It suffices to prove three claims.

Claim 1: Under Bay, supp(agC) ⊆ ∩isupp(Ci).

Suppose Bay. Let a be a world not in ∩isupp(Ci). Pick an individual i such

that a 6∈ supp(Ci). Since Ci(W\{a}) = 1 and since pooling is certainty adopting

by Proposition 1, we have agC(W\{a}) = 1. So a 6∈ supp(agC).

Claim 2: Under BayPub (the weakest Bayesian axiom), ∩isupp(Ci) ⊆ supp(agC).

Assume BayPub and let a ∈ ∩isupp(Ci). Since the profile C′ in which every

individual assigns probability one to a is coherent and arises from C by condi-

tionalization of everyone’s credence function on the singleton event {a}, BayPub
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tells us that agC′ arises by conditionalization of agC on {a}. In particular,

a ∈ supp(agC).

Claim 3: Under BayPub, supp(agC) ⊆ ∪isupp(Ci).

Under BayPub, since C is unchanged if all credence functions are condition-

alized on E = ∪isupp(Ci), we have agC = (agC)|E, and thus agC ⊆ E.�

Lemma 4. Under any of the six Bayesian axioms and Indiff*, for all coherent

credence profiles C and worlds a, b ∈W , if Ci(a) = Ci(b) 6= 0 for each individual

i, then agC(a) = agC(b) 6= 0.

Proof. Assume Indiff* and BayPub, the weakest Bayesian axiom by Propo-

sition 1. Consider a coherent profile C and a, b ∈W such that Ci(a) = Ci(b) 6= 0

for all individuals i. By Indiff* there is another coherent profile C′ such that

C ′i(a) = C ′i(b) 6= 0 for all individuals i and agC′(a) = agC′(b). Conditionaliz-

ing all members of C on E = {a, b} yields the same (coherent) profile, denoted

C′′, as conditionalizing all members of C′ on E. So, applying BayPub twice,

(agC)|E = agC′′ = (agC′)|E. Hence, as ((agC′)|E)(a) = ((agC′)|E)(b), we have

((agC)|E)(a) = ((agC)|E)(b), and thus agC(a) = agC(b). Finally, this value is

non-zero, since otherwise agC would assign zero probability to E and could thus

not be conditionalized on E. �

Lemma 5. Under any of the six Bayesian axioms and Indiff*,

(a) group probability ratios are a function of individual probability ratios, i.e.,

there exists a unique function f from (0,∞)n to (0,∞) such that agC(a)
agC(b) =

f
(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
for all worlds a, b ∈W and all coherent credence profiles

C in which everyone gives non-zero probability to a and to b,

(b) this function satisfies f(1) = 1 and f(xy) = f(x)f(y) for all x,y ∈ (0,∞)n

(where ‘1′ stands for ‘(1, ..., 1)’ and ‘xy’ stands for ‘(x1y1, ..., xnyn)’).

Proof. Assume Indiff* and the by Proposition 1 weakest Bayesian axiom,

BayPub. I proceed in several claims (the first two of which do not require Indiff*).

Claim 1: For all a 6= b in W there is a unique function fa,b from (0,∞)n to (0,∞)

such that agC(a)
agC(b) = fa,b

(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
for all coherent profiles C in which every

individual assigns non-zero probability to a and to b.

Consider a 6= b in W . Uniqueness of such a function fa,b follows from the fact

that any x ∈ (0,∞)n can be written as x =
(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
for some coherent

profile C. As for existence of the function, consider coherent profiles C and C′ in

which a and b receive non-zero probabilities from everyone and Ci(a)
Ci(b)

=
C′i(a)
C′i(b)

for all

i. We have to show that agC(a)
agC(b) = agC′(a)

agC′(b) . Conditionalizing everyone’s credence

function on E = {a, b} transforms C and C′ into the same (coherent) profile

C′′, which by BayPub implies that (agC)|E and (agC′)|E each equal agC′′. So
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agC(a)
agC(b) = agC′(a)

agC′(b) , where these two ratios are well-defined and non-zero because

agC(a), agC(b), agC′(a), agC′(b) 6= 0 by Lemma 3.

Claim 2: fa,c(xy) = fa,b(x)fb,c(y) for all x,y ∈ (0,∞)n and all pairwise distinct

a, b, c ∈W .

Consider x,y ∈ (0,∞)n and pairwise distinct a, b, c ∈ W . The claimed rela-

tion follows from the definition of the functions fa,b, fb,c, fa,c, because one can con-

struct a (coherent) profile C for which x =
(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
, y =

(
C1(b)
C1(c)

, ..., Cn(b)Cn(c)

)
,

and thus xy =
(
C1(a)
C1(c)

, ..., Cn(a)Cn(c)

)
.

Claim 3: All fa,b for a 6= b are the same function, to be denoted f . (This shows

part (a) restricted to the case a 6= b).

Consider worlds a, a′, b, b′ with a 6= b and a′ 6= b′, and let x ∈ (0,∞)n. I need

to show that fa,b(x) = fa′,b′(x). I distinguish between three cases.

Case 1 : a = a′. Here I need to show that fa,b(x) = fa,b′(x). We may pick a co-

herent profile C such that Ci(b) = Ci(b
′) 6= 0 for all i and x =

(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
=(

C1(a)
C1(b′)

, ..., Cn(a)
Cn(b′)

)
. By Lemma 4, agC(b) = agC(b′), and so agC(a)

agC(b) = agC(a)
agC(b′) .

Hence, fa,b(x) = fa,b′(x).

Case 2: b = b′. By an argument analogous to that in Case 1, fa,b(x) = fa′,b(x).

Case 3 : a 6= a′ and b 6= b′. I show that fa,b(x) = fa′,b′(x) by distinguishing

between three subcases and drawing on Cases 1 and 2:

• If a 6= b′, then fa,b(x) = fa,b′(x) = fa′,b′(x).

• If a′ 6= b, then fa,b(x) = fa′,b(x) = fa′,b′(x).

• If a = b′ and a′ = b, then, choosing any c ∈ W\{a, b} (by using that

|W | ≥ 3), fa,b(x) = fa,c(x) = fb,c(x) = fb,a(x).

Claim 4: f(1) = 1.

By applying Claims 2–3 with x = y = 1, one obtains that f(11) = f(1)f(1).

Since 11 = 1 it follows that f(1) = 1.

Claim 5: For any possibly identical a, b ∈W , fa,b

(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
= f

(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
for all coherent credence profiles C in which all Ci assign non-zero probabilities

to a and b. (This essentially extends Claim 3 to the case that a = b.)

Consider any such a, b,C. By definition of fa,b we have to show that agC(a)
agC(b) =

f
(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
. In case a 6= b this holds already by Claim 3. In case a = b it

holds by Claim 4 and the fact that agC(a)
agC(b) = 1 and

(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
= 1. �

Lemma 6. Given the assumptions and notation of Lemma 5,

(a) under BayPri+, f(x1, ..., xn) = x1 · · ·xn for all (x1, ..., xn) ∈ (0,∞)n and

the pooling rule is multiplicative pooling,
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(b) under Contin, there are w1, ..., wn ≥ 0 such that f(x1, ..., xn) = xw1
1 · · ·xwnn

for all (x1, ..., xn) ∈ (0,∞)n and the pooling rule is the weighted geometric

rule with weights w1, ..., wn (in particular, w1+· · ·+wn ≥ 1 if W is infinite).

Proof. We use the assumptions and notation of Lemma 5.

Claim 1: Under BayPri+, f(x1, ..., xn) = x1 · · ·xn for all (x1, ..., xn) ∈ (0,∞)n.

Assume BayPri+ and let (x1, ..., xn) ∈ (0,∞)n. I prove by induction that

f(x1, ..., xi, 1, ..., 1) = x1 · · ·xi for all i = 0, 1, ..., n. The initial step where i = 0

is obvious: f(1, ..., 1) = 1 by Lemma 5. Now assume the claim holds for a

given i ∈ {0, ..., n − 1}, i.e., f(x1, ..., xi, 1, ..., 1) = x1 · · ·xi. I have to show

that f(x1, ..., xi+1, 1, ..., 1) = x1 · · ·xi+1.. Pick worlds a 6= b and a coherent

credence profile C such that everyone assigns non-zero probabilities to a and b

and such that
(
C1(a)
C1(b)

, ..., Cn(a)Cn(b)

)
= (x1, ...xi, 1..., 1). Let C′ be the coherent profile

arising from C by conditionalizing the credence function of individual i + 1 on

a likelihood function L for which L(a), L(b) 6= 0 and L(a)
L(b) = xi+1. Note that

C′i+1(a)

C′i+1(b)
= Ci+1(a)L(a)

Ci+1(b)L(b)
= 1 · xi+1 = xi+1. So

(
C′1(a)
C′1(b)

, ..., C
′
n(a)

C′n(b)

)
= (x1, ...xi+1, 1..., 1).

Now

f(x1, ..., xi+1, 1, ..., 1) = f

(
C ′1(a)

C ′1(b)
, ...,

C ′n(a)

C ′n(b)

)
=

agC′(a)

agC′(b)

=
((agC)|L)(a)

((agC)|L)(b)
=

agC(a)L(a)

agC(b)L(b)

= f

(
C1(a)

C1(b)
, ...,

Cn(a)

Cn(b)

)
L(a)

L(b)
= f(x1, ...xi, 1..., 1)xi+1

= (x1 · · ·xi)xi+1 = x1 · · ·xi+1,

where the first equation on the second line applies BayPri+.

Claim 2: Under BayPri+, the pooling rule is the multiplicative rule.

Assume BayPri+. Let ag∗ be the multiplicative rule. I show that ag = ag∗.

Consider a coherent profile C. Since BayPri+ implies BayPri and thus Bay

(see Proposition 1), the group credence function agC assigns zero probability to

worlds outside ∩isupp(Ci) by Lemma 3(a). So does clearly the multiplicative

group credence function ag∗C. It thus remains to show that agC and ag∗C

coincide on words in ∩isupp(Ci), i.e., worlds to which everyone assigns non-

zero probability. It suffices to show that for any two such worlds a and b the

probability ratio is the same both times: agC(a)
agC(b) = ag∗C(a)

ag∗C(b) . This equation holds

because each side equals C1(a)
C1(b)

· · · Cn(a)Cn(b)
. Indeed, agC(a)

agC(b) = C1(a)
C1(b)

· · · Cn(a)Cn(b)
by Claim

1, and ag∗C(a)
ag∗C(b) = C1(a)

C1(b)
· · · Cn(a)Cn(b)

by definition of the multiplicative rule.

Claim 3: Under Contin, there are n numbers, henceforth denoted w1, ..., wn ∈ R,

such that f(x1, ..., xn) = xw1
1 · · ·xwnn for all (x1, ..., xn) ∈ (0,∞)n.

Assume Contin. Define the function g : Rn → R by g(x) = log(f(ex1 , ..., exn))

for all x ∈ Rn. By Lemma 5(b) and the properties of the logarithm and the
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exponential function, it follows that g(x + y) = g(x) + g(y) for all x,y ∈ Rn.

So g obeys Cauchy’s functional equation. Further, g is continuous, since f is

continuous by Contin. So g is linear, i.e., there are weights w1, ..., wn ∈ R such

that

g(x) = w1x1 + · · ·+ wnxn for all x ∈ Rn

by a fundamental theorem on functional equations (see Aczél 1966). It follows

that

f(x) = eg(logx1,...,logxn) = elog(x
w1
1 ···x

wn
n ) = xw1

1 · · ·x
wn
n for all x ∈ (0,∞)n.

Claim 4: Under Contin, for each full-support profile C (i.e., each profile in which

everyone assigns non-zero probability to all worlds) there is a constant k > 0 such

that agC(a) = k[C1(a)]w1 · · · [Cn(a)]wn for all worlds a. (This ‘almost’ shows that

ag is a weighted geometric rule, except that we only quantify over full-support

profiles and have not proved that w1, ..., wn are non-negative.)

Assume Contin. Consider a full-support profile C. Fix a world b ∈W . Define

the constants k′ = agC(b) and k′′ = [C1(b)]
w1 · · · [Cn(b)]wn . Note that k′, k′′ > 0

(using that agC has full support by Lemma 3(b)). For all worlds a,

agC(a) = k′
agC(a)

agC(b)
= k′f

(
C1(a)

C1(b)
, ...,

Cn(a)

Cn(b)

)
= k′

(
C1(a)

C1(b)

)w1

· · ·
(
Cn(a)

Cn(b)

)wn

=
k′

k′′
[C1(a)]w1 · · · [Cn(a)]wn ,

where the first equation on the second line holds by Claim 3. This show Claim 4

with k = k′

k′′ .

Claim 5: Under Contin, w1, ..., wn ≥ 0.

Assume Contin. Suppose for a contradiction that i is an individual such that

wi < 0. Consider a world a ∈ W , and a sequence of full-support profiles Ck

(k = 1, 2, ...) converging to a credence profile C in which Ci has support W\{a}
and each Cj with j 6= i has full support W . By the fact that wi < 0 and

Claim 4, agCk converges to the probability measure assigning probability one to

a. This is because [Ck
1 (a)]w1 · · · [Ck

n(a)]wn tends to infinity (the term [Ci(a)]wi

tends to infinity) while for all other worlds b 6= a [Ck
1 (b)]w1 · · · [Ck

n(b)]wn tends to

a finite value. Meanwhile by Contin agCk also converges to agC. It follows that

agC(a) = 1. So the support of agC is {a}. This contradicts the fact that the

support of agC must include the intersection of supports ∩msupp(Cm) = W\{a}
by Lemma 3.

Claim 6: Under Contin, ag is the weighted geometric rule with weights w1, ..., wn.

Assume Contin. By Claim 4, ag coincides with this weighted geometric rule

on the subdomain of full-support profiles. This subdomain is dense in the full

domain of coherent profiles: every coherent profile is the limit of some sequence
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of full-support profiles, as readers can easily check. Since ag and the weighted

geometric rule with weights w1, ..., wn are two continuous rules on the domain

of coherent profiles which coincide on a dense subdomain, the two rules coincide

globally. �

B.4 Completing the theorems’ proofs

Proof of Theorem 1. First, any weighted geometric rule whose weights are all

positive satisfies Bay by Lemma 1(a) and satisfies Contin and Indiff* (and under

finite W Indiff) by Lemma 2. Conversely, if a rule for aggregating coherent

profiles satisfies Bay, Contin and Indiff*, then by Lemma 6(b) it is a weighted

geometric rule, where by Lemma 1(a) the weights are all positive. �

Proof of Theorem 2. First, any weighted geometric rule with at least one

positive weight satisfies BayPub by Lemma 1(b), as well as Contin and Indiff*

(and under finite W Indiff) by Lemma 2. Conversely, if a rule for aggregating

coherent profiles satisfies BayPub, Contin and Indiff*, then by Lemma 6(b) it is

a weighted geometric rule, where by Lemma 1(b) some weight is positive. �

Proof of Theorem 3. This result follows from Theorem 1 via Proposition 1.

�

Proof of Theorem 4. This result follows from Proposition 2, as Bay+ implies

BayPub+ and BayPri+. �

Proof of Theorem 5. First, each weighted geometric rule whose weights sum

to one satisfies BayPub+ by Lemma 1(c), and also Contin and Indiff* (and under

finite W Indiff) by Lemma 2. Conversely, if a rule for aggregating coherent pro-

files satisfies BayPub+, Contin and Indiff*, then by Lemma 6(b) it is a weighted

geometric rule, where by Lemma 1(c) the weights sum to one. �

Proof of Theorem 6. First, the multiplicative rule satisfies BayPri+ by Lemma

1(d), and satisfies Indiff* (and under finite W Indiff) by Lemma 2. Conversely, if

a rule for pooling coherent profiles satisfies BayPri+ and Indiff*, then by Lemma

6(a) it is the multiplicative rule. �

Proof of Theorem 7. Let D be the domain of all coherence profiles, and D′

the subdomain of all coherent credence profiles. I prove the three claims in a

different order.

(b) First, any power dictatorship satisfies BayPub, Contin and Indiff* (and

Indiff if W is finite). The argument is similar to that given for weighted geometric

rules; it suffices to adapt Lemmas 1 and 2. Conversely, consider a rule ag defined
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on D and satisfying BayPub, Contin and Indiff*. Let ag′ be its restriction to D′.
Check that ag′ still satisfies the three axioms. So it must by Theorem 2 be a

weighted geometric rule whose weights w1, ..., wn are not all zero. I consider two

cases.

Case 1: only one individual, say individuals i, has non-zero weight wi. Then

ag is the power dictatorship with power dictator i and power wi, because (i) ag

coincides with this power dictatorship on the subdomain D′ which (as one may

check) is dense in D, and (ii) ag and the power dictatorship are continuous rules.

Case 2: at least two individuals, say individuals i and j, have non-zero

weights. I derive a contradiction. Fix two worlds a 6= b, and consider profiles Ck

(k = 1, 2, ...) in which i’s credences are given by Ck
i (a) = 2−k and Ck

i (b) = 1−2−k,

j’s credences are given by Ck
j (a) = 1 − 2−k

2
and Ck

j (b) = 2−k
2
, and any other

member m’s credences are given by Ck
m(a) = Ck

m(b) = 1
2 . As Ck is coherent,

agCk is given by weighted geometric pooling, so that agCk(c) = 0 for worlds

c 6= a, b and

agCk(a)

agCk(b)
=

[Ck
i (a)]wi [Ck

j (a)]wj

[Ck
i (b)]wi [Ck

j (b)]wj
=

2−kwi(1− 2−k
2
)wj

(1− 2−k)wi2−k
2wj

= 2k
2wj−kwi (1− 2−k

2
)wj

(1− 2−k)wi
,

which converges to ∞. So agCk converges to the credence function assigning

probability one to a.

Now construct another sequence of profiles Dk (k = 1, 2, ...), in which Dk is

defined like Ck except that the roles of k and k2 are interchanged: so Dk
i (a) =

2−k
2
, Dk

i (b) = 1− 2−k
2
, Dk

j (a) = 1− 2−k, Dk
j (b) = 2−k, and Dk

m(a) = Dk
m(b) = 1

2

for all members m 6= i, j. Applying the weighted geometric formula again, we

find that agDk(c) = 0 for worlds c 6= a, b and that agDk(a)
agDk(b)

converges to 0 rather

than ∞. So agDk converges to the credence function assigning probability one

to b rather than a.

Meanwhile, as one easily checks, the profiles Ck and Dk both converge to a

same limiting profile C (in which Ci(b) = 1, Cj(a) = 1, and Cm(a) = Cm(b) = 1
2

for members m 6= i, j). So agCk and agDk both converge to agC by Contin. This

contradicts the fact that agCk and agDk converge to different credence functions.

(c) First, any dictatorship satisfies BayPub+, Contin and Indiff* (and Indiff if

W is finite). The argument is again similar to that for weighted geometric rules.

Conversely, consider a rule ag on D satisfying BayPub+, Contin and Indiff*. Its

restriction to D′, denoted ag′, still satisfies these axioms. So it must by Theorem

5 be a weighted geometric rule whose weights w1, ..., wn sum to one. There are

two cases.

Case 1: only one individual i has non-zero weight, hence weight one. Then

ag is the dictatorship by individual i, by the same continuity argument as under

Case 1 above.
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Case 2: more than one individual has non-zero weight. Then a contradiction

can be derived by an argument parallel to that under Case 2 above.

(a) Consider a rule ag on D satisfying the axioms in Theorem 1, 3, 4 or 6.

Its restriction to D′, denoted ag′, still satisfies these axioms. In the case of the

axioms of Theorem 4 this already is a contradiction. In the case of the axioms

of Theorem 1, 3 or 6, it follows by the theorem that ag′ is a weighted geometric

rule whose weights w1, ..., wn are all non-zero. This implies a contradiction, just

as under Case 2 in the proofs of (b) and (c). �
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